

Sanmac® 329

Bar

Datasheet

Sanmac® 329 is a duplex stainless steel with optimized sulfur content and inclusion morphology for improved machinability. The grade is characterized by:

- Excellent machinability
- High mechanical strength
- Very good resistance to pitting and stress corrosion cracking

Standards

– EN Number: 1.4460

Product standard

– EN 10088-3

Chemical composition (nominal)

Chemical composition (nominal) %

С	Si	Mn	Р	S	Cr	Ni	Мо	Ν
≤0.05	≤1.0	≤2.0	≤0.035	≤0.030	25.5	5	1.5	0.08

Applications

Sanmac[®] 329 is especially suited for the manufacture of components for pumps and other equipment used in, for example, alkaline environments commonly found in the pulp and paper industry.

Corrosion resistance

Sanmac[®] 329 has a Pitting Resistance Equivalent (PRE^{*}) of \geq 31.

*The PRE is defined as, in weight %: PRE = % Cr + 3.3 x % Mo +16 x % N

Sanmac[®] 329 has very good resistance to stress corrosion cracking in chloride environments. The grade has also good resistance to general corrosion in acidic media, thanks to the high chromium content and alloying with molybdenum.

Forms of supply

Bar

Finishes and dimensions

The standard size range for bar steel in Sanmac[®] 329 is 75-180 mm. Round bar is supplied in the solution annealed, quenched and peel-turned condition.

Lengths

Bars are delivered in random lengths of 3-7 m, depending on diameter.

Straightness

Diameter, mm	Height of arch, mm/m Typical value
> 75	2

Tolerances

Diameter, mm	Tolerances, mm
75-95	-0/+1.00
95-180	-0/+1.50

Surface conditions

Surface conditions	Ra, μm Typical value	Diameter, mm	
Peeled and burnished	1	75-180	

Mechanical properties

At 20°C (68°F)

Metric units

Proof strength		Tensile strength	Elong.	Hardness
R _{p0.2} a)	R _{p1.0} a)		A ^{b)}	Brinell
MPa	MPa	MPa	%	
≥450		620-880	20	≤260
Imperial unit	S			
Proof streng	yth	Tensile strength	Elong.	Hardness

R _{p0.2} ^{a)}	R _{p1.0} a)		A ^{b)}	Brinell
ksi	ksi	ksi	%	
≥65		90-128	20	≤260

 $1 MPa = 1 N/mm^2$

a) $R_{p0.2}$ and $R_{p1.0}$ correspond to 0.2% offset and 1.0% offset yield strength respectively. b) Based on LO = 5.65 \sqrt{S} , where LO is the original gauge length and SO the original cross-sectional area.

Impact strength at room temperature

≥85 J

Physical properties

Density

7.8 g/cm3, 0.28 lb/in3

Specific heat capacity

20°C: 500 J/(kg °C) 68°F: 0.12 Btu/(lb °F)

Thermal conductivity

20°C: 15 W/(m °C) 68°F: 9 Btu/(ft h °F)

Thermal expansion, mean values in temperature ranges (X10-6)

Metric units

Temperature, °C	30-100	30-200	30-300
	Per °C		
Sanmac 329	13.0	13.5	14.0
Carbon steel	12.5	13.0	13.5
ASTM 316L	16.5	17.0	17.5

Imperial units

Temperature, °F	86-200	86-400	86-600
	Per °F		
Sanmac® 329	7.0	7.5	7.8
Carbon steel	6.8	7.0	7.5
ASTM 316L	9.0	9.5	9.8

Sanmac[®] 329 has a far lower coefficient of thermal expansion than austenitic stainless steels and can therefore possess certain design advantages.

Resistivity

20°C: 0.8 μΩm 68°F: 31.5 μΩin.

Modulus of elasticity (x103)

Temperature, °C	MPa	Temperature, °F	ksi
20	200	68	29.0
100	194	200	28.2
200	186	400	27.0
300	180	600	26.2

Machining

Recommended inserts and cutting data starting values

Turning						
Insert geometry	Grade	e	Feed	Cutting speed	l (m/min.)	
MF	GC20	15	0.15	210		
MM	GC20	25	0.30	190		
Thread turning						
Insert geometry	C	Grade	Cutti	ng speed (m/mi	n.)	
F	(GC1135	120			
Thread tapping						
Cutting speed (m/min.)						
4-12 C	Cutting speeds	in the upp	er range sh	ould be chosen f	or coated threading taps.	
Parting off						
Insert geometry	Grade	Feed (m	nm/rev)	Cutting	g speed (m/min.)	
СМ	GC1145	0.08-0.1	2	100		
Grooving						
Insert geometry	Grade	Feed (r	nm/rev)	Cutting	g speed (m/min.)	
GF	GC2135	0.08-0.	12	140		
Drilling						
High speed steel drilling	Diamete	er (mm)	Grade	Feed (mm/rev)	Cutting speed (m/mm.)	

HSS drill	1-3	HSS	0.03–0.09	8–15
Solid carbide drilling	Diameter (mm)	Grade	Feed (mm/rev)	Cutting speed (m/mm.)
CoroDrill 840	3-12	GC1220	0.06-0.22	50

Short hole drilling Diameter (mm) Geometry Grade peripheral/central Feed (mm/rev) Cutting speed (m/mm.)

CoroDrill 880	12-14	LM	GC4044/GC1044	0.04-0.09	140
CoroDrill 880	14-36	LM*	GC2044/GC1144	0.04-0.18	140
CoroDrill 880	36-63	LM	GC4024/GC1044	0.04-0.18	140

*MS for peripheral insert

Cutting performance comparison

By applying the collective Sanmac knowledge in the upgrade of the standard Alloy 329, Alleima R&D engineers have increased the machinability of the material to a new level. That, combined with a low spread in the manufacturing process, will provide major benefits to customers using Sanmac 329.

Microstructure

In the solution annealed and quenched condition Sanmac[®] 329 has an austenitic-ferritic microstructure, which is free from grain-boundary carbides and intermetallic phases. The ferrite content is 55 – 75%.

Disclaimer: Recommendations are for guidance only, and the suitability of a material for a specific application can be confirmed only when we know the actual service conditions. Continuous development may necessitate changes in technical data without notice. This

datasheet is only valid for Alleima materials.

