Every day, advanced materials from Sandvik are used in thousands of heat exchangers around the world. Regardless of the application, our aim is to help you boost productivity and meet tough technical and sustainability goals. But more than just assuring excellent corrosion resistance, high mechanical strength and good weldability, when you work with us, you gain access to our:

UPTIME SPECIALISTS
To help you solve technical materials challenges, we offer a worldwide network of sales engineers, backed by metallurgists and research engineers from our R&D centers.

INTEGRATED PRODUCTION
Our integrated production facilities ensure the consistency and quality of our materials, from batch to batch. In other words, no unwanted surprises!

LEADING-EDGE R&D
Our world-leading R&D program is committed to developing new and superior products and innovative, proactive solutions in close collaboration with you.

ONE-STOP SHOPPING
A worldwide local network of sales units is available to address your needs with a wide range of grades and sizes to cover most material requirements.

EXPECT MORE FROM US
All of our customers place a high value on trouble-free production, reduced maintenance costs and low downtime. In this respect, your choice of fabrication materials for heat exchangers is naturally vital to achieving this. But you also need to consider the larger picture of who you are working with as a partner.

To truly secure safe and reliable materials, you need a supplier known for its attention to detail in every step of the manufacturing process. That is why many industrial producers turn to Sandvik. Having manufactured steel for more than 150 years, we’ve built our reputation on high-quality and reliable products. But more than this, we’ve earned the trust of our customers by also providing excellent technical and after-sales service.

Sandvik controls the entire production process – from melting and alloying in the electric arc and high frequency furnaces, the AOD converter and continuous casting plant to the finishing operations, such as cold rolling, cold drawing or heat treatment.

QUALITY POLICIES AND STANDARDS

Our fully integrated steel mill ensures close control of the entire production process – from the initial melting of the steel to the finished product. Sandvik follows Quality Management Systems that are approved by internationally recognized organizations. For example, we hold the ASME Quality Systems Certificate as a Materials Organization, approval for ISO 9001, ISO 17025, and PED 97/23/EC, as well as product approvals from TÜV, JIS and Lloyd’s Register. In terms of both products and services, quality is a major objective for us, as described in the company’s Quality Policy. All employees are involved and committed to continuous improvement.

TOTAL CONTROL – FROM MELT TO FINISHED PRODUCT

HEALTH, SAFETY & ENVIRONMENT

Environmental awareness, health and safety (HSE) consideration are at the forefront of all activities. Our vision of Zero Accidents for our own people and customers is a key part of our HSE program. We also hold ISO 14001 and OHSAS 18001 approvals. Stainless steel can be 100% recycled and our steel plant in Sandviken operates a full materials recovery process.

ETHICS AND FAIR PLAY

Our core values and code of conduct include promoting equality in all respects. We actively fight against corruption and operate in a highly ethical manner in relation to employees, customers, suppliers and all other industry contacts.

RESEARCH AND DEVELOPMENT

Sandvik has one of the largest steel research centers in Europe. Altogether the Sandvik Group has 2,700 R&D personnel in 50 centers and holds 8,000 patents. New materials are constantly being developed and existing materials and production processes improved. We also cooperate closely with leading universities, research institutions and specialist companies.

QUALITY POLICIES AND STANDARDS

Our fully integrated steel mill ensures close control of the entire production process – from the initial melting of the steel to the finished product. Sandvik follows Quality Management Systems that are approved by internationally recognized organizations. For example, we hold the ASME Quality Systems Certificate as a Materials Organization, approval for ISO 9001, ISO 17025, and PED 97/23/EC, as well as product approvals from TÜV, JIS and Lloyd’s Register. In terms of both products and services, quality is a major objective for us, as described in the company’s Quality Policy. All employees are involved and committed to continuous improvement.

PRODUCTION FACILITIES – CLOSE TO YOU

Sandvik tube manufacturing facilities are located strategically around the world. Our combined resources, connected through a worldwide electronic network of information and planning systems, enable us to offer a reliable supply of high-quality products – regardless of where you are located.
Experience shows that no two plants are exactly the same. Why? Because every plant faces a unique set of circumstances, from service conditions to other operating parameters. In other words, when choosing seamless tube, flanges, fittings and other material for a heat exchanger you want to know that your supplier offers a broad range of grades and enough flexibility in production processes to meet specific requirements.

MORE CHOICES, MORE POSSIBILITIES
That’s why many choose Sandvik stainless steel tubes. Many appreciate our extensive experience in the production of special stainless steels and tubes, flexibility in raw material sourcing and ability to find the optimal materials solutions. It allows them to obtain special steel grades with chemical compositions tailored to specific applications, markets or country requirements.

EXTREME CONDITIONS DEMAND SUPERIOR TUBES
Our tubes are suitable for all types of heat exchangers: coolers, condensers, evaporators, preheaters, reheaters, reboilers, steam generators and air coolers. Extreme conditions can be handled by developing competitive and innovative solutions through close cooperation with our customers. Together, we can achieve lower operating costs and increase long-term operating reliability.

TAKE ADVANTAGE OF OUR GLOBAL ASSETS
From advanced logistics systems to state-of-the-art product delivery and communication systems, Sandvik offers a wide range of services to ensure rapid global distribution from strategically placed locations worldwide. These include sophisticated plant programming capabilities that secure your inventory replenishment.

GRADES, STANDARDS AND SIZE RANGE
Sandvik has an extensive manufacturing program for seamless heat exchanger tubes covering most types of standard austenitic, duplex (austenitic-ferritic) and high alloy austenitic stainless steels as well as titanium and zirconium. Our program meets both European and American quality standards.

Our main size range, produced in imperial and metric dimensions ranges from 12 mm on up to 40 mm outer diameter. Special sizes can be made to order. Tubes are supplied in straight lengths up to 30 meters, or as U-bends. See the table to the right for the most common standards and grades for heat exchangers.

FIND THE OPTIMAL SOLUTION FOR YOUR PLANT CONDITIONS
Regardless of the heat exchanger design or size, the initial capital expenditure (CAPEX) is likely to be low compared to the cost of your entire plant. And yet, your ability to achieve sustained energy efficiency and uptime can have a significant impact on total operating expenses (OPEX) over the long run. But making the right choice of fabrication material will depend a lot on your specific operating conditions.

Product standards

<table>
<thead>
<tr>
<th>Sandvik grade</th>
<th>American standards</th>
<th>European standards</th>
<th>AFNOR</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASTM</td>
<td>ASME</td>
<td>EN</td>
<td>DIN/VD TÜV</td>
</tr>
</tbody>
</table>

AUSTENITIC STAINLESS STEELS

Sandvik 3R60™	A213 A269 SA213	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik 3R12	A213 A269 SA213	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik 3R19	A213 A269 SA213	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik 3R25	A213 A269 SA213	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik 3R32	A213 A269 SA213	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik 3R64	A213 A269	10216-5 DIN 17456	NFA 49-217 219711 219713

DUPLEX STAINLESS STEELS

Sandvik SAF 2205™	A789 SA789	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik SAF 2507™	A789 SA789	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik SAF 2507™	A789 SA789	10216-5 DIN 17456	NFA 49-217 219711 219713
Sandvik SAF 2304™	A789 SA789	10216-5 DIN 17456	NFA 49-217 219711 219713

NI ALLOYS

Sanicro® 28	B668 SB668	10216-5 DIN 17456	NFA 49-217 219711 219713
Sanicro® 30	B163 B607 SB163 SB607	10216-5 DIN 17456	NFA 49-217 219711 219713
Sanicro® 41	B163 B623 SB163 SB623	10216-5 DIN 17456	NFA 49-217 219711 219713
Sanicro® 60	B844 SB844	NC 23076	
Sanicro® 69	B163 B167 SB163 SB167	10216-5 DIN 17456	NFA 49-217 219711 219713
Sanicro® 70	B163 B167 SB163 SB167	10216-5 DIN 17456	NFA 49-217 219711 219713

* 254 SMO is a trademark owned by Outokumpu OY.
WHAT CHALLENGE ARE YOU FACING?

Over the years, our global network of technical sales experts has worked closely with a wide range of industries using heat exchangers, including the oil and gas industry, petrochemicals, power generation, chemicals and more. Based on our experience from installations worldwide, we’d be happy to help you select just the right materials.

When selecting a material grade for a heat exchanger operating under certain conditions, a number of considerations have to be made. The grade needs to have sufficient corrosion resistance combined with suitable mechanical and physical properties.

SEAWATER COOLERS
Selecting the right tube material for heat exchangers using seawater as a cooling medium is critical. Seawater contains large amounts of sodium chlorides and solid particles, such as sand silt and organic solids. In such a severe environment, you need to select a grade with high resistance against both localized corrosion and erosion corrosion. Sandvik SAF 2707 HD™ is a grade specifically developed for these types of severe environments.

OIL REFINING
Refinery process streams involve many corrosive elements that can shorten the lifetime of low alloyed steels – especially as more complex stages are now added. To recover heat in the different processes, heat exchangers are deployed in plants where they typically operate under severe corrosion conditions. Most leakage in heat exchangers is attributable to corrosion on the tubing. Stainless steel and, in particular, duplex grades, including Sandvik SAF 2205™, Sandvik SAF 2507® or Sandvik SAF 2707 HD™, can overcome such problems.

PETROCHEMICALS
Corrosion in petrochemical plants can lead to contamination of manufactured products. Sandvik’s high-quality, corrosion-resistant stainless steels include a wide range of grades, from high-alloyed austenitic grades to hyper-duplex Sandvik SAF 2707 HD™.

CHEMICALS
Sandvik’s special grades are used in heat exchangers in many demanding chemical processes, including the production of inorganic acids and caustics. Sandvik seamless tubes offer the required high reliability in these often critical applications.

SALT EVAPORATION
Various types of salt production processes involve severe environments for tubular products with high levels of chlorides. It is thus important to choose materials with high resistance to localized corrosion. Sandvik manufactures a number of suitable grades for these severe environments, such as Sandvik SAF 2707 HD™, Sandvik SAF 2507®, Sanicro® 28 and 254 SMO.

POWER GENERATION
Sandvik heat exchanger tubes can be found in condensers, feedwater heaters and wastewater handling equipment. Sandvik steel grades fulfill the high quality standards for use in both conventional fossil fuelled power plants as well as nuclear power stations.

LNG AND NATURAL GAS PROCESSING
Cryogenic conditions and corrosive seawater are common challenge in the offshore processing of LNG and natural gas. An ideal solution is Sandviks new grade program for LNG, which is a new family of super austenitic (highly alloyed) seamless stainless tube with 5-7% molybdenum. Due to its superior corrosion resistance and high mechanical strength Sandvik offers i.e. LNG vaporizers sub-stanially longer service life, compared with standard stainless steel. Our duplex stainless steels are also corrosion-resistant weight-savers for a range of applications due to wall-thickness reductions enabled by their higher strength than standard steel.

FLUE GAS CLEANING/DESULPHURISATION
Environmental demands call for effective gas cleaning equipment. For heat exchangers handling sour gas under condensing conditions, look into our high alloyed austenitic grades such as Sanicro® 41 and, in particular, Sanicro® 28 and 254 SMO. Our higher alloyed duplex stainless steels can also be suitable.

HYDROMETALLURGY
Slurry processing under high pressures and temperatures may give rise to severely corrosive conditions. For these types of applications, duplex stainless steels such as Sandvik SAF 2304® with its combination of corrosion resistance, high strength and erosion resistance, is a particularly well-suited alternative.
CUT COSTS BY USING DUPLEX STAINLESS STEELS

Significant cost savings can be achieved by using duplex steel when designing a heat exchanger. The cost-effective combination of high mechanical strength, superior corrosion resistance and the fabricating compatibility of duplex stainless steels allows for the reduction in tube wall thickness and thus lighter equipment designs.

LIFECYCLE COST CONSIDERATIONS
The two different ways of looking at the cost of products depend on whether you choose the next-best alternative (e.g. carbon steel) or a material designed for being the ultimate solution for a specific application.

Sandvik proposed special grade versus next-best alternative grade (NBA)

<table>
<thead>
<tr>
<th>Sandvik Grade</th>
<th>Chemical compositions</th>
<th>Mechanical properties</th>
<th>Proposed grade investment or replacement</th>
<th>Proposed special grade total costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNS 32750†</td>
<td>Cmax</td>
<td>Cr</td>
<td>Ni</td>
<td>Mo</td>
</tr>
<tr>
<td>Sandvik SAF 2507™</td>
<td>0.030</td>
<td>25</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Sandvik SAF 2205™</td>
<td>0.030</td>
<td>25</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

PRE is defined with the PRE. The PRE number is calculated from the chemistry of the steel according to the following formula: PRE=%Cr+3.3%Mo+16%N.

There are a range of tests that can be employed to determine approximate ranking according to the Pitting Resistance Equivalent (PRE) formula. One popular test method for determining the performance of intermediate and high-alloy grades, in particular, is ASTM G48A. ASTM G48A, practice A (6% FeCl₃) is one of the toughest pitting corrosion tests for stainless steels. It gives the same ranking order for the steels as in slightly chlorinated seawater. In Sandvik’s laboratory, a modified version of the G48 is used, raising the temperature step-by-step. This allows the determination of the critical pitting temperature. The results from such a test are shown at the top of this page.

As shown in the graph below, Sandvik SAF 2707 HD™ and Sandvik SAF 2507™ have the highest PRE values while Sandvik SAF 2205™ and 904L represent an intermediate level. Sandvik SAF 2304® has a PRE value at the same level as 316L.

PITTING CORROSION

In stainless steel, the main alloying elements that contribute to improving pitting and crevice corrosion resistance are chromium, molybdenum and nitrogen. Chromium is the most important element due to its ability to form a protective oxide layer. In general, the higher the chromium content the better the corrosion resistance. The presence of molybdenum and nitrogen also contribute strongly to improved corrosion resistance.

The pitting resistance of stainless steels can be determined with the PRE. The PRE number is calculated from the chemistry of the steel according to the following formula: PRE=%Cr+3.3%Mo+16%N.
TITANIUM AND ZIRCONIUM TUBING

Titanium and zirconium are optimal for challenging environments where not even the best stainless steels meet the corrosion resistance requirements.

At Sandvik, we manufacture seamless titanium and zirconium heat exchanger tubes in a dedicated, state-of-the-art tube mill using a fully integrated process. It starts with the melting of raw materials in high vacuum furnaces and ends with the finished seamless tubes. The manufacturing process is specially designed to work with non-ferrous metals like titanium and zirconium.

For more than 50 years, the Sandvik group has been the world’s largest independent manufacturer of seamless zirconium and titanium tubing. We supply advanced tube to a wide range of sectors including the chemical, petrochemical, aerospace and nuclear industries.

TITANIUM

Titanium has a unique set of properties that makes it suitable for a variety of demanding applications. For example, it has high environmental resistance, relying primarily on a very thin and highly protective surface oxide film. It is also highly resistant to wet chlorine chemicals, virtually all types of salt solutions, including seawater, a range of acids, organic and inorganic chemicals and gases. The same oxide film provides a high resistance to erosion in high-velocity process streams. Its excellent corrosion and erosion resistance makes titanium a preferred heat-transfer material for shell-and-tube heat exchangers, since it permits the use of thin heat transfer walls and high fluid flow rates. In addition, titanium has only half the weight of steel. It is non-magnetic and is characterized by a high melting point, high strength-to-weight ratio and a low modulus of elasticity.

ZIRCONIUM

Zirconium is highly resistant to a wide range of acids and bases, both organic and inorganic. This makes it an interesting and exceptional long-life alternative for highly demanding applications, compared to standard steels. Sandvik Zirconium 702*, our seamless zirconium grade produced for heat exchanger applications, offers the highest corrosion resistance, compared to standard steels. Sandvik Zirconium 702*, our seamless zirconium grade produced for heat exchanger applications, offers the highest corrosion resistance, compared to standard steels.

AVAILABLE SANDVIK ASTM/ASME DEFINED GRADES:
1, 2, 3, 7, 9, 11, 12, 16, 17, 26, 28.
Other grades can be offered upon request
- The range of dimensions covers outer diameters from 8 mm on up to 40 mm and lengths up to 16.5 meters with certain ODL and ODWL limitations.
- All tubing can be supplied as straight lengths or as U-bent tubes.
- Non-destructive testing facilities include ultrasonic testing and eddy current testing.
- Tubes are supplied in cold pilgered, vacuum annealed and polished conditions.

Descriptive of U-Bend:

- Difference in length of legs
- Distance between points of tangency
- Nominal outer diameter of tube
- Distance between legs measured on OD
- Leg length
- Developed length
- Nominal bend radius
- Minimum wall thickness at the back of the bend
- Deviation from plane of the bend
- Minimum wall thickness defined by specification

Solution:
- We use an argon protective atmosphere inside the tubes.

Stabilization:
- In strong, open or closed, wooden boxes, depending on the destination - max. 8,000 kg.
- Ends of tubes protected by plastic caps.
- Vertical separators for each radius.
- Chloride-free plastic separators between each row, every 2 meters.
- Each bundle is covered with plastic.
- Customers can provide a packing drawing or Sandvik can prepare a packing plan.
- Packing lists, covered with plastic, are placed on each wooden box for easy identification of order details – including exact list of radii and lengths inside.

Sandvik is one of the world’s leading suppliers of U-bent tubes for heat exchangers. These are manufactured from our precision straight tubes, using the cold-pilgering method, and feature a bright annealed surface. Production is strictly controlled in a step-by-step process to fulfill all technical demands from our customers.

U-BEND TUBES FOR HEAT EXCHANGERS

TECHNICAL STANDARDS FOR BENDING
Sandvik standard specification 7-2-1179
DIN 28179, TEMA RCB 2.31
Other specifications or special requirements are made available upon request. Copies of common standard specifications are also available upon request.

MEASURING, CUTTING, DEBURRING, CLEANING
- U-bends are measured exactly in accordance with relevant standards, or to customer’s specification.
- All tubes are cut and carefully cleaned after testing.
- Minimum holding time at the required pressure is 5 sec.
- All tubes are dried and carefully cleaned after testing.

PACKING
- Minimum holding time at the required pressure is 5 sec.
- Packing lists, covered with plastic, are placed on each wooden box for easy identification of order details – including exact list of radii and lengths inside.
Sandvik high-performance heat exchanger tubing

MANUFACTURING PROGRAM

SELECTED GRADES

<table>
<thead>
<tr>
<th>Grade</th>
<th>UNS</th>
<th>ASTM TP</th>
<th>EN steel no.</th>
<th>W-NR.</th>
<th>AFNOR</th>
<th>C</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Others</th>
<th>CHEMICAL COMPOSITION (nominal, %)</th>
<th>PRESSURE PURPOSE</th>
<th>MECHANICAL PROPERTIES</th>
<th>PED*1</th>
<th>PREN</th>
<th>ASME 1987</th>
<th>Proof strength R min.</th>
<th>Tensile strength Rm min.</th>
<th>Elong. A % min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplex stainless steels</td>
<td></td>
</tr>
<tr>
<td>Sandvik SAF 2707 HD™</td>
<td>S32707</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.030</td>
<td>27</td>
<td>6.5</td>
<td>4.8</td>
<td>N, S</td>
<td>X</td>
<td>X</td>
<td>700</td>
<td>920-1100</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik SAF 2507T™</td>
<td>S32750</td>
<td>–</td>
<td>1.4410</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.030</td>
<td>25</td>
<td>7</td>
<td>4</td>
<td>N</td>
<td>X</td>
<td>X</td>
<td>550</td>
<td>800-1000</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik SAF 2205™</td>
<td>S31803/S32205</td>
<td>–</td>
<td>1.4462</td>
<td>1.4462</td>
<td>220D22-05-03</td>
<td>≤0.030</td>
<td>22</td>
<td>5</td>
<td>3.2</td>
<td>N</td>
<td>X</td>
<td>X</td>
<td>485</td>
<td>680-880</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik SAF 2304®</td>
<td>S32304</td>
<td>–</td>
<td>1.4962</td>
<td>1.4962</td>
<td>220C23-04A2</td>
<td>≤0.030</td>
<td>23</td>
<td>4.5</td>
<td>–</td>
<td>N</td>
<td>X</td>
<td>X</td>
<td>400</td>
<td>600-820</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik SAF 3660</td>
<td>S31500</td>
<td>–</td>
<td>1.4424</td>
<td>1.4417</td>
<td>220D18K2-03</td>
<td>≤0.030</td>
<td>18.5</td>
<td>4.5</td>
<td>2.6</td>
<td>S, N</td>
<td>X</td>
<td>X</td>
<td>450</td>
<td>700-900</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-alloy austenitic stainless steels and nickel alloys</td>
<td></td>
</tr>
<tr>
<td>Sandvik 254 SMA®</td>
<td>S31254</td>
<td>–</td>
<td>1.4547</td>
<td>(1.4529)*</td>
<td>210Nd320-18-08A2</td>
<td>≤0.020</td>
<td>20</td>
<td>18</td>
<td>6.1</td>
<td>Cu</td>
<td>N</td>
<td>Cu</td>
<td>310</td>
<td>855-850</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 29R65™</td>
<td>N08094</td>
<td>–</td>
<td>1.4939</td>
<td>1.4939</td>
<td>Z1NdCu25-20-04</td>
<td>≤0.050</td>
<td>20</td>
<td>25</td>
<td>4.5</td>
<td>Cu</td>
<td>–</td>
<td>Cu</td>
<td>230</td>
<td>520-720</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 28</td>
<td>N0828</td>
<td>–</td>
<td>1.4963</td>
<td>1.4963</td>
<td>–</td>
<td>–</td>
<td>≤0.030</td>
<td>27</td>
<td>31</td>
<td>3.5</td>
<td>Cu</td>
<td>X</td>
<td>X*</td>
<td>220</td>
<td>550-750</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 30</td>
<td>N0830</td>
<td>Alloy 800</td>
<td>1.4558</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.050</td>
<td>20</td>
<td>52</td>
<td>–</td>
<td>Ti, N</td>
<td>X</td>
<td>X*</td>
<td>205</td>
<td>520-690</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 41</td>
<td>N0841</td>
<td>Alloy 825</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.050</td>
<td>20</td>
<td>38.5</td>
<td>2.6</td>
<td>Cu, Ti</td>
<td>–</td>
<td>X</td>
<td>240</td>
<td>550-750</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 60</td>
<td>N06625</td>
<td>6444</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.030</td>
<td>21.5</td>
<td>61</td>
<td>8.7</td>
<td>Nb</td>
<td>–</td>
<td>X*</td>
<td>245</td>
<td>825-1025</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 69</td>
<td>N06690</td>
<td>Alloy 690</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.050</td>
<td>16.5</td>
<td>72.5</td>
<td>–</td>
<td>Cu, N</td>
<td>X</td>
<td>X</td>
<td>245</td>
<td>>560</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanicro® 70</td>
<td>N06690</td>
<td>Alloy 690</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>≤0.050</td>
<td>16.5</td>
<td>72.5</td>
<td>–</td>
<td>Cu, N</td>
<td>X</td>
<td>X</td>
<td>245</td>
<td>>560</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austenitic stainless steels</td>
<td></td>
</tr>
<tr>
<td>Sandvik 312L</td>
<td>S30430</td>
<td>304/304L</td>
<td>1.4306</td>
<td>1.4301</td>
<td>1.4306</td>
<td>1.4301</td>
<td>220N18-10</td>
<td>≥0.030</td>
<td>18.5</td>
<td>10</td>
<td>–</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>210</td>
<td>515-680</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 316L</td>
<td>S31603</td>
<td>316/316L</td>
<td>1.4435</td>
<td>–</td>
<td>1.4435/1.4436</td>
<td>–</td>
<td>220Nd17-13</td>
<td>≤0.050</td>
<td>17</td>
<td>13</td>
<td>2.6</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>220</td>
<td>515-680</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 316S</td>
<td>S31603</td>
<td>316/316L</td>
<td>1.4404</td>
<td>–</td>
<td>1.4404/1.4401</td>
<td>–</td>
<td>220Nd17-12</td>
<td>≤0.050</td>
<td>17</td>
<td>13.5</td>
<td>2.1</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>220</td>
<td>515-680</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 316S5</td>
<td>S31005/31210</td>
<td>321/2312</td>
<td>1.4541</td>
<td>1.4540</td>
<td>1.4541/1.4545</td>
<td>–</td>
<td>25Nd17-10</td>
<td>0.05</td>
<td>17</td>
<td>10</td>
<td>2.1</td>
<td>Ti</td>
<td>X</td>
<td>X</td>
<td>210</td>
<td>515-680</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 316T</td>
<td>S31635</td>
<td>316Ti</td>
<td>1.4571</td>
<td>1.4571</td>
<td>–</td>
<td>–</td>
<td>25Nd17-12</td>
<td>0.5</td>
<td>17</td>
<td>12</td>
<td>2.1</td>
<td>Ti</td>
<td>X</td>
<td>X</td>
<td>220</td>
<td>510-710</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 318L</td>
<td>S30453</td>
<td>304L</td>
<td>–</td>
<td>–</td>
<td>1.4311</td>
<td>1.4311</td>
<td>(220Nd18-10A2)*</td>
<td>≤0.030</td>
<td>18.5</td>
<td>9</td>
<td>–</td>
<td>N</td>
<td>X</td>
<td>X</td>
<td>275</td>
<td>550-750</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 318E</td>
<td>S31703</td>
<td>317L</td>
<td>–</td>
<td>–</td>
<td>(1.4438)*</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>18.5</td>
<td>14.5</td>
<td>3.1</td>
<td>–</td>
<td>X</td>
<td>X</td>
<td>220</td>
<td>515-690</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandvik 840</td>
<td>S34700/S34709</td>
<td>347/347H</td>
<td>1.4501</td>
<td>1.4912</td>
<td>1.4500</td>
<td>1.4912</td>
<td>25Nd18-10</td>
<td>0.05</td>
<td>17.5</td>
<td>11</td>
<td>–</td>
<td>Nb</td>
<td>X</td>
<td>X</td>
<td>220</td>
<td>515-690</td>
<td>35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Pressure Equipment Directive 97/23/EC
2) 254 SMA is a trademark owned by Outokumpu OY.
3) In brackets, nearest equivalent steel grade.
5) Particular Material Appraisal (PMA) is the process by which the pressure equipment manufacturer ensures that each proposed material that is not in a harmonized standard or covered by a European Approval for Materials (EAM) conforms to the applicable Essential Safety Requirements (ESR) for materials in the Pressure Equipment Directive (PED). Sandvik will support the pressure equipment manufacturer and have together with TÜV prepared the information for the pressure equipment manufacturer.
6) Valid for SEW 470

To order a brochure or datasheet, please contact us via your local Sandvik office, or download a copy from materials.sandvik